

Overview

- □ RPU's Water System
- □ Future Water Demands
- Water Source Sustainability
- □ Groundwater Modeling
- □ Potential Alternative Water Sources
- □ Stakeholder Communication

- □ Rochester population~115,000
- □ Approximately 40,400 water customers
- □ Appropriation limit 5.7 billion gallons/year
- □ 10 pressure zones
- □ 20 water storage facilities
 - Storage capacity = 16.95 million gallons

- □ 31 active water supply wells
- □ Pumping from 5 aquifers:
 - Shakopee (6)
 - Jordan (31)
 - Tunnel City (9)
 - Wonewoc (9)
 - Mt. Simon (1)

Historical Annual Water Pumpage and Permitted Appropriations (1980-2018)

Population

Mayo Destination Medical Center (DMC)

- □ Largest economic development initiative in Minnesota's history
- □ \$5 billion in private development
- □ \$585 million in public infrastructure (State, County, City)
- □ Projected growth by 2040 as a result of DMC
 - Population increase ~40% (115,000 to 165,000)
 - 50,000 new jobs
- □ Larger population = greater water demand

Water Demand Projections

Year	Population	Average Daily Demand (MGD)	Maximum Daily Demand (MGD)
2019	119,100	13.1	28.17
2020	121,000	13.31	28.62
2021	123,200	13.55	29.14
2022	125,400	13.79	29.66
2023	127,600	14.04	30.18
2024	129,800	14.29	30.7
2025	132,000	14.52	31.22
2030	143,000	15.73	33.82
2040	165,000	18.15	39.02

Water Source Sustainability

- □ RPU has a robust water conservation program
- □ RPU has been investigating their groundwater source for 30 years
 - Partnering with MGS/USGS/DNR/MDH
 - Total expenditures to day >\$1.5 million
- □ Still, the question remains:

Can the aquifers sustainably meet future water demand?

Water Source Sustainability

- □ Water source sustainability study started in late 2013 and is ongoing
 - Groundwater modeling
 - Identification and closing of data gaps
 - Calcareous fen evaluations
 - Preliminary evaluation of alternative sources
 - Periodic coordination meetings with DNR staff
- □ Future work
 - Assessment of deeper aquifers
 - Evaluation of potential water re-use options
 - Optimization of pumping

Water Source Sustainability: Groundwater Use

- Proposed use:
 - No adverse effect on the aquifer's ability to supply the needs of future generations
 - No harm to ecosystems
 - No degradation of water quality
 - No reduction of water levels such that existing wells can no longer access water
- Potential for ecosystem impacts

Water Source Sustainability: Groundwater Use

- □ Ecosystem includes:
 - Rivers and streams
 - Calcareous fens (13)
 - Trout streams
- Groundwater modeling being used to evaluate potential impacts of future pumping on the ecosystem
- RPU has regular meetings with DNR staff to discuss the evaluation

- □ Preliminary model available 2014
- Two rounds of model improvement have been completed
 - Model domain and BCs
 - Addition of model layers
 - Decorah edge enhanced recharge
 - Improved capability to evaluate land use changes
 - Steady state & transient calibration

- □ Future demand modeled in steady state scenarios (w/ uncertainty analysis)
- □ 2007 2013 averages used as the baseline
- □ Up to 18 additional wells
 - New wells assumed to be in Jordan
 - Modeled pumping rates based on ultimate demand projection of 28.2 MGD (developed in 2010)
 - Average day demand of 12.1 MGD for 2014 – 2018

- Model used to evaluate potential impact of future pumping:
 - Water table drawdown at calcareous fens
 - Baseflow reduction in streams
 - Drawdown in pumped aquifers

- □ Potential alternative sources:
 - Surface water
 - Stormwater reuse
 - Wastewater reuse
 - Aquifer storage and recovery
 - Move more pumping to deeper aquifers

- □ Preliminary evaluation criteria:
 - Water quantity
 - Drought resistance
 - Water Quality/Treatment
 - Reliability
 - Regulatory burden
 - Overall cost

- Potential uses
 - Total replacement of GW
 - Total replacement of Shakopee/Jordan
 - Partial replacement of supply from existing wells
 - Mitigation of ecosystem impacts
 - Reduction of summer irrigation peak impacts
 - ASR

Table 9 Total replacement of potable groundwater supply

Source	Water Quantity	Drought Resistance	Water Quality/Treatment	Reliability	Regulatory Burden	Overall Cost	Total Score			
TCW aquifer		Not applicable								
Mt Simon Aquifer		Not applicable								
Wastewater Reuse	1	1	3	3	3	3	14			
Surface Water	2	2	2	2	1	2-3	11-12			
Stormwater Reuse	1-3	3	2	3	2	2	13-15			

Table 10 Total replacement of potable Shakopee/Jordan supply

	Water	Drought	Water		Regulatory	Overall	Total
Source	Quantity	Resistance	Quality/Treatment	Reliability	Burden	Cost	Score
TCW aquifer	2	1	1-2	1	1	1-2	7-9
Mt Simon Aquifer	2	1	1-2	1	1	2	8-9
Wastewater Reuse	1	1	3	3	3	3	14
Surface Water	3	3	2	2	2	3	15
Stormwater Reuse	1-3	3	2	3	2	3	14-16

Table 11 Partial replacement of potable supply

Source	Water Quantity	Drought Resistance	Water Quality/Treatment	Reliability	Regulatory Burden	Overall Cost	Total Score
TCW aquifer	1-2	1	1-2	1	1	1-2	6-9
Mt Simon Aquifer	1-2	1	1-2	1	1	2	7-9
Wastewater Reuse	1	1	3	3	3	3	14
Surface Water	1	2	2	2	1	3	11
Stormwater Reuse	1-3	3	3	3	1	3	14-16

Table 12 Mitigation of impacts to natural resources

Source	Water Quantity	Drought Resistance	Water Quality/Treatment	Reliability	Regulatory Burden	Overall Cost	Total Score
TCW aquifer	1	1	1	1	3	1	8
Mt Simon Aquifer	1	1	1	1	3	2	9
Wastewater Reuse	1	1	1-3	1	1	2-3	7-10
Surface Water	1	2	2	2	1	2	10
Stormwater Reuse	2	3	2-3	3	1	1	11-12

Table 13 Reduction of the impact of summer irrigation peak

	Water	Drought	Water		Regulatory	Overall	Total
Source	Quantity	Resistance	Quality/Treatment	Reliability	Burden	Cost	Score
TCW aquifer	1	1	1	1	1-2	2	7-8
Mt Simon Aquifer	1	1	2	1	1-2	3	9-10
Wastewater Reuse	1	1	2-3	1	3	2	10-11
Surface Water	2	2	1	2	1	1	9
Stormwater Reuse	1-2	2-3	1	2	1	1	8-10

Table 14 Aquifer storage and recovery

Source	Water Quantity	Drought Resistance	Water Quality/Treatment	Reliability	Regulatory Burden	Overall Cost	Total Score
TCW aquifer	1	1	1-2	1	2	1	7-8
Mt Simon Aquifer	1	1	1-2	1	2	2	8-9
Wastewater Reuse	1	1	3	2	3	3	13
Surface Water	1-2	2	3	2	2	2	12-13
Stormwater Reuse	1-3	3	3	3	2	2	14-16

Upcoming Work

- □ 2019 Applying for a LCCMR grant to expand MW network
 - Currently 10 MW's (DNR Contract) expanding to 17 MW's
- □ 2019 Completing RPU's wellhead protection plan amendment
- □ 2019 Continuing Evaluation of Alternative Sources
 - Water re-use options w/water reclamation plant
 - Assessment of deeper aquifers
- □ 2019 Continue Coordination w/DNR Staff
- □ 2020 Update water master plan
 - Future wells needed to meet demands
 - Optimization of pumping

Community Outreach and Stakeholder Engagement

RPU Plugged In – Monthly Newsletter

School Tours

Drinking Water Week

- Public Tours of Water Tower & Well
- Promotional Giveaways
 - Rain Barrels & Water Bottles
- ➤ Water Bottle Display in Lobby

RPU Partnering with local businesses

RPU Partnered with Graham Arena & Children's Museum

- Installed Bottle Filler Drinking Fountains
- Reduced Waste, Save Money & Conserve Water

TV Commercials – "Tips from Tony"

<u>Tips from Tony - Water Bottles</u>

Tips from Tony - Water Conservation & Backflow Testing

Summary

- Communication with Stakeholders:
 - Customer Communication
 - Presentations, social media, website, brochures
 - DNR Meetings
 - GW model, water sustainability activities, field monitoring
 - State & Local Agencies
 - MDH, MPCA, DNR, Olmsted County, SWCD

Questions

John Greer, PG - Barr Engineering Co.

Jgreer@barr.com

952-832-2691

Todd Osweiler - Rochester Public Utilities

Tosweiler@rpu.org

507-280-1589

